

PIV accuracy improvement near stationary walls using interrogation window masking

F. Gökhan Ergin¹

¹ Microfluidics Product Manager, Dantec Dynamics, Copenhagen, Denmark. gokhan.ergin@dantecdynamics.com

Figure 1 (a) IA without wall correction results in overestimated velocity. (b) Flow masking reduces the bias.

Introduction

PIV accuracy near stationary walls suffers from the fact that the interrogation area (IA) in which the cross-correlation is performed has a finite size. The problem arises because the geometric center of the interrogation area often does not coincide with the centroid of the seeded area (Fig 1a). Vector relocation [1] and Particle Tracking Velocimetry [2] techniques are known to produce better results near walls.

Test data

In this study, a novel wall-mask technique (Fig 1b) is tested to improve accuracy of PIV results from a previous experiment, where long-distance MicroPIV measurements were taken on an airplane model [3]. This dataset is selected because two different flow configurations can be tested: the raw PIV images contain both a stagnating flow and a boundary layer flow in the field of view (Fig. 2a and 2b).

Figure 2 Application of interrogation window masking in a boundary layer flow over a model airplane (**a**) Typical raw particle image (**b**) Mean of the horizontal velocity component, *U* (average of 61 vector maps) (**c**) Mean relative error distribution due to interrogation window masking.

Results

A digital mask is applied on the interrogation windows close to a stationary wall, so that the center of the interrogation window and the centroid of the particle cloud coincide. A comparison is made on the test data by calculating the difference between results obtained with and without interrogation window masking. As expected the wall-window only effects the velocity computation near the boundaries (Fig 2c). A histogram of the mean relative error distribution shows that the wallmasking method improves PIV accuracy near walls significantly (as much as 95% and mostly up to 15%).

REFERENCES

Theunissen R, Scarano F & Riethmuller ML "On improvement of PIV image interrogation near stationary interfaces" Exp Fluids (2008) 45:557–572
Kähler CJ, Scharnowski S and Cierpka C "On the uncertainty of digital PIV and PTV near walls" Exp Fluids (2012) 52:1641–1656
Ergin FG and Alemdaroğlu N "Long-distance MicroPIV measurements of a commercial aircraft model at low Reynolds number" 7th Ankara International Aerospace Conference, Ankara, Turkey, AIAC-2013-013 (2013)